about-3 back-contact back-deep eitaa کانال روبیکاخبرگزاری سایبربان
مطالب پربازدید
هوش
1403/08/29 - 07:56- هوش مصنوعي

هوش مصنوعی و دانش‌آموزان؛ تحولی که باید برای آن آماده شد

آموزش و پرورش، به خصوص مدارس به عنوان مهم‌ترین بستر تربیت نسل آینده، نقش کلیدی در آماده‌سازی دانش‌آموزان برای ورود به دنیای هوش مصنوعی دارد. اکنون هوش مصنوعی برای دانش‌آموزان یک انتخاب نیست، بلکه یک ضرورت است.

ساخت
1403/09/24 - 08:40- آسیا

ساخت پیچیده‌ترین سلاح سایبری زیرساختی جهان توسط ایران

کارشناسان ادعا کردند که بدافزار مرتبط با ایران زیرساخت‌های حیاتی ایالات متحده و رژیم صهیونیستی را هدف قرار داده است.

راه‌اندازی
1403/09/28 - 07:37- آسیا

راه‌اندازی اولین کامپیوتر کوانتومی ساخت رژیم صهیونیستی

رژیم صهیونیستی از راه‌اندازی اولین کامپیوتر کوانتومی ساخت خود با استفاده از فناوری پیشرفته ابررسانا خبر داد.

ویمو در همکاری با دیپ‌مایند گوگل، از هوش مصنوعی بازی استارکرافت ۲ برای توسعه‌ی شبکه‌های عصبی خودروهای خودران استفاده می‌کند.

به گزارش کارگروه فناوری اطلاعات سایبربان ؛ اکنون که بازار ساخت خودروهای خودران داغ‌تر از همیشه است، یافتن راه‌های جدید برای آموزش شبکه‌های عصبی روز‌به‌روز مهم‌تر می‌شود. این موضوع توسعه‌دهندگان را واداشته است راه‌های بسیار مبتکرانه‌ای برای آموزش سریع‌تر شبکه‌های خود پیدا کنند. حال به‌ نظر می‌رسد که یکی از این روش‌ها، به بازی استارکرافت ۲ (StarCraft II) مربوط می‌شود.

ممکن است این سؤال برایتان پیش بیاید که یک بازی ده‌ساله چه ارتباطی با آموزش شبکه‌های عصبی امروزی و مدرن دارد؟ براساس گزارش MIT Technology Review، تکنیک‌هایی که برای هوشمندتر و سخت‌تر کردن هوش مصنوعی این بازی استفاده می‌شود، در توسعه‌ی شبکه‌های عصبی هم به‌کار گرفته‌ می‌شود. 

در بازی StarCraft 2 هر بازیکن هم‌زمان با مدیریت منابع خود، باید تعداد زیادی واحد مستقل با توانایی‌های منحصربه‌فرد را کنترل کند و با حریفی مبارزه کند که قصد نابودی او را دارد. انسان این کار پیچیده را به‌سادگی انجام می‌دهد؛ ولی انجام آن برای ماشین‌ها راحت نیست.

اتفاقی که در هوش مصنوعی StarCraft 2 می‌افتد، این است که سیستم دیپ‌مایند (DeepMind) گوگل از نوعی الگوریتم به‌نام «آموزش مبتنی‌بر جمعیت» برای شبیه‌سازی فرایند انتخاب طبیعی استفاده می‌کند. این الگوریتم در ابتدا کارآمدترین واحدها را انتخاب می‌کند و سپس، نسل‌های بعدی را از روی آن‌ها می‌سازد و بدین‌ترتیب، فرایند یادگیری را کوتاه می‌کند.

اتفاقی مشابه در ساخت خودروهای خودران هم رخ می‌دهد. ویمو (Waymo) یکی از واحد‌های شرکت آلفابت، یعنی شرکت مادر گوگل است و دیپ‌مایند از این تکنولوژی برای آموزش خودرو‌های خودران خود استفاده می‌کند. هنگامی که داده‌ی جدیدی وارد سیستم می‌شود، دیپ‌مایند کارآمدترین بخش‌های شبکه‌ی عصبی را انتخاب و برای تنظیم فرایندها و یادگیری از آن‌ها استفاده می‌کند.

شبکه‌های عصبی در وسایل نقلیه‌ی خودران ویمو برای تشخیص اشیاء در جاده و پیش‌بینی حرکت سایر خودروها و تصمیم‌گیری برای حرکت‌های بعدی استفاده می‌شود. دیپ‌مایند پس از اعلام همکاری با ویمو در پستی نوشت آموزش این شبکه‌های عصبی به «هفته‌ها بهبودبخشی و آزمایش و نیروی محاسباتی عظیم» احتیاج داشت.

متیو دِوین، مدیر زیرساخت یادگیری ماشین ویمو، در مصاحبه‌ای با MIT Technology Review گفت: 

یکی از مشکلات مهم هنگام استفاده از یادگیری ماشین در سیستم‌های صنعتی، قابلیت بازسازی سیستم به‌منظور بهره‌گیری از کدهای جدید است. ما باید شبکه را دائما آموزش دهیم و کد را دوباره بنویسیم. وقتی شبکه را دوباره آموزش می‌دهید، نیاز است کمی پارامترها را تغییر دهید.

گوگل برخی از تکنولوژی‌های یادگیری ماشین خود را تجاری‌سازی کرده‌؛ اما حالا مدل یادگیری مبتنی‌بر جمعیت خود را به‌طور خاص در وسایل نقلیه‌ی خودران ویمو به‌کار گرفته است. ناگفته نماند ویمو ازنظر بسیاری از کارشناسان، پیشرفته‌ترین برنامه‌ی خودروهای خودران در جهان محسوب می‌شود و مسیر زیادی از پیشرفت خود را به‌صورت شبیه‌سازی‌شده طی کرده‌ است.

تازه ترین ها
تشکیل
1403/10/23 - 15:15- آسیا

تشکیل سازمان امنیت سایبری در ترکیه

ترکیه با هدف ارتقای امنیت سایبری ملی سازمان ریاست امنیت سایبری را تأسیس کرد.

دبی
1403/10/23 - 13:08- هوش مصنوعي

دبی میزبان رقابت برترین توسعه دهندگان بازی هوش مصنوعی

دبی میزبان رویدادی برای رقابت برترین توسعه دهندگان بازی هوش مصنوعی در 23 ژانویه امسال خواهد بود.

تولید
1403/10/23 - 12:55- آمریکا

تولید تراشه‌های ۴ نانومتری در آمریکا

شرکت صنایع نیمه‌رسانا تایوان، تولید تراشه‌های ۴ نانومتری را در آریزونا آمریکا آغاز می‌کند.

مطالب مرتبط

در این بخش مطالبی که از نظر دسته بندی و تگ بندی مرتبط با محتوای جاری می باشند نمایش داده می‌شوند.